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The final draft of this work was accepted for that the vectorx is an N dimensional state vector,
publication on August 29, 2008 in the IEEE and x;_; is its history for the lastD time steps:
Transactions on Systems Man and Cybernetics, x; | = [Xt—p,X¢t—D41,..-,X¢—1). The quantityu; is
Part C the observed system input, apdis the observed scalar

system output. We assume that the entire data that is
available, covering both inputs and outputs is given by

Abstract—This paper describes the application of known the set(X,)).
and novel prognostic algorithms on systems that can be de-  1he hidden stateh; is assumed to correspond to
scribed by low dimensional, potentially nonlinear dynamic. dif t d fi fi ithin th t In th
The methods rely on estimating the conditional probability irerent mode configurations wi m_ € system. In the
distribution of the output of the system at a future time Case where we assume that the hidden state takes on
given knowledge of the current state of the system. We discrete valuesh; switches between/ modes, each
show how to estimate these conditional probabilities using affecting the output dynamicg. In the case of a failure

a variety of techniques, including bagged neural networks nf tne systemh, could move to a failed state, thus also
and kernel methods such as Gaussian Process Regression h ina th t f th b d tout. | th
(GPR). The results are compared with standard methods changing the nature o € observed output. In other

such as a linear autoregressive model and the nearestapp”C?tionsaht could be.a continuous state variable,
neighbor algorithm. We demonstrate the algorithms on a modeling a slow progression of the system from a normal

real-world data set and a simulated data set. The real- state to a failed state [27]. Because we assume that we
world data set consists of the intensity of anN Hs laser. do not know the output functio® or the hidden state

The laser data set has been shown by other authors to h t rel it to hel det . heth
exhibit low-dimensional chaos with significant drops in ™t we cannot rely on 1t to help us aetermine whether or

intensity. The simulated data set is generated from the NOtthe o_bser_veq}t is a_nomalous. The problem thﬁ_lt we
Lorenz attractor and has known statistical characteristics. address in this paper is to develop a method to discover
On these data sets, we show the evolution of the estimatedwhether or not the current observed valyerepresents
conditional probability distribution, the way it can act as a 5 gnomaly based on the observed history of the system.
prognostic signal, and its use as an early warning system. s | hes h b di din the lit
We also review a novel approach to perform Gaussian everal approaches have been _'Scusse n _e _' era-
Process Regression with large numbers of data points. ture to address the problem of making future predictions
on systems that can be described by Equations 1, 2 and
3. Traditional approaches include those developed in the

. INTRODUCTION system identification community [16]. Other techniques

This paper addresses the problem of making predii@-CIUde Hidden Markov Models, where the transitions
tions of future events on systems that can be describedkf)?}ween theM_ hidden discrete states are modeled as
low-dimensional dynamical equations. We assume th@tfirst-order hidden Markov process [22]. The HMM

we are given data from a data generating process that GigWs for the dynamics of the system to be modeled but
be functionally described by the following equations: requires that a procedure (such as clustering or learning
vector quantization) be used to develop a discrete rep-

h, = T'(h;,) (1) resentation of the system output. Other popular methods
xp = WXy, hi,w) (2) to convert the time series into symbolic representations
v = Qx) 3) include Piecewise Aggregate Approximation (PAA) [17]

and Symbolic Aggregate approXimation (SAX) [18].
We assume that the functioil determining the evo- Once the symbolic representation is generated it can be
lution of the hidden system stafie; is unknown. We analyzed using the HMM. For many applications, the
also assume that the functioh, which generates the dwell time within a hidden state does not follow the
observed output of the system is unknown. We assuragponential decay that arises from the standard HMM



algorithm. Dong and He [7] [8] have recently developed from the governing equations of a system [6].

this method for analyzing systems with hidden discrete

transitions (as shown in Figure 1) using a hidden semi-« The N Hj laser data has been widely used in the
Markov model (HSMM) where the dwell time within a time series prediction community for over a decade
state is modeled by a Gaussian distribution. Their work to test machine learning algorithms for detection,
shows that the HSMM can lead to superior performance prediction, and model validation [15], [39].

on real-world applications compared with the standard

HMM formulation. Methods that are suitable for making predictions on
this system may be transferable to other systems. The
capability to predict time series that arise from nonlinear
chaotic systems could be useful in several other real-
world applications that exhibit chaotic behavior. Fault
detection systems make use of either passive or active
(o ~ @ D) sensing devices, connected in a discrete or continuous
fashion [5], [29], [34], [35].
These sensing devices monitor one or more state
variables depending on the nature of the application.
For some systems, these measured state variables can be
@ @ analogous to state variables in differential equations. Fo
example, Yamanaka et. al. [1], [36], [37] presented a sim-
Fig. 1. This figure shows a finite state machine of the systetest Pl€ analytical model to explain the interaction between
The finite state machine has a potential path for progreskiom  crack planes using van der Waals inter-atomic force. This

normal operation (clear circles) to the failed state (salidle). The ;
model allows for the system to move from a failed state baciotmal approach addressed the prOblem of detectlng a closed

operation which models intermittent problems that caredricomplex ~ Crack in a mechanical system using ultrasonic testing.
systems. For generality, we have included bi-directiometves and a The paper proposed a new detection technique based on

fully connected graph. an analysis of the subharmonic components which are
generated due to the nonlinear interaction of the crack

surface and the forcing function. The authors showed that

Il. MOTIVATION under certain parametric conditions the vibration signals

We demonstrate the detection and prognostic cap[ at represent the crack opening displacement can exhibit

bilities of our algorithm on the data from the LorenZhaotic beha\lllor. q q q h
model and the\ H laser system because it is a suitable "0°Nd €t al. [10] conducted a separate study to shown

test bed for building prognostic algorithms for severdnat the response of nonlinear dynamical systems can
reasons including: have chaotic oscillation under fatigue crack growth. Most

. The NI laser system can be modeled by IothyS|caI phenomenon are complex and high dimensional

di ional diff ial i h lowi in nature which can make the modeling process diffi-
Imensional diterentia’ equations, thus aflowing, . 1, some cases, it is possible to approximate the

for the application of Takens' Theorem fromhigh-dimensional system with low-dimensional dynam-

nonlinear . dynam|cs._ This theorem  gives th'iacs which are informative and interpretable.
mathematical foundation for us to take past values

of the time series to predict future values.

0)

I1l. BACKGROUND

o The laser intensity can be approximated by A time series is a collection of observations repre-
the Lorenz equations which are known teented sequentially as a function of time. A significant
exhibit chaotic behavior for certain values of thévody of work is to create mathematical models that
parameters which puts a bound on the long-terpredict the system behavior from a set of observations.
predictability of the intensity. Chaos theory tellsThe approach taken in the machine-learning community
us that short-term predictions may be possible fdras been to create potentially nonlinear statistical nzodel
chaotic time series, but long-term predictions arthat learn a mapping from past states to future states
impossible The time horizon for such predictionswithout requiring extensive knowledge of the physical
is given by the Lyapunov time constant of thesystem. In many cases, methods such as neural networks
system, which can be derived from data or directlgan produce high quality predictions [32].



The focus of the current study is on the analysis afian Processes. These models are intended to predict
time series obtained from a low-dimensional nonlinedhe probability distribution of a future observation as
dynamical system that exhibits chaotic behavior. Theharacterized by the mean and variance of a Gaussian
objective is to develop a prognostic algorithm that modtistribution. The variance acts as a measure of the
els the system dynamics using past observations amgcertainty associated with each model prediction on
forecasts the future system behavior while providing fature observations. A detailed review on various sources
measure of uncertainty in the predictions. This meaf uncertainties in modeling time series has been well
sure of uncertainty can be interpreted as the modetidcumented by Draper [9].
confidence in the prediction. If the model’'s confidence In 1996, Neal [21] showed that Gaussian Process (GP)
reduces at a certain point, it could be indicative of amodels are equivalent to the neural networks with one
unexpected event, thus leading to a prognostic signalhidden layer with an infinite number of hidden neurons.

Because the system is chaotic, there is an upper bouUr@smussen [23] introduced the empirical formulation
on the forecasting horizon [32]. Once the model is abpj.Gaussmn_ Processes in terms of probabilistic model
to make predictions of the system state at tiré it can USing Bayesian treatment. Mackay [19] and Seeger [26]
be iterated to make predictions for future time steps. Thixtended this research to show the relationship of the
is done by updating the model with the current estimaféaussian Process model to several other popular ma-
of the output at each iteration and repeating the predicteffine learning techniques like generalized Radial Basis
for k number of steps in the future to generate estimatEs&inctions (RBF), splines, and support vector machines.
for the system output at times+ 1,t+ 2, ..., ¢t + k. Gaussian processes are fully specified by a mean func-

The idea to predict the future values of a time seridi® and covariance function. For zeros-mean process,
as a linear combination of the preceding values wale latter plays the prime role to characterize the process.
first introduced by Yule [38] as the auto-regressivzhe covariance function is equivalent to a Mercer kernel
process (AR). A comprehensive literature review ofyinction that measures the similarity between two input
conventional techniques to select a model that couﬂﬁ)ints' In statistical terms, the kernel function caloegat
be used to forecast the behavior of the time has beBlf covariance between the outputs corresponding to
provided in [32]. The authors provide insight on |oca|g|ff¢rent inputs. The ch0|c.e of the covariance function
linear models, global autoregressive, moving averag¥Pically depends on the prior assumption on the smooth-
and neural-networks based approaches such as the RafiS @nd continuity of the underlying function generated
Basis Function (RBF) based model. K-nearest neighboPy, & Process. Mathematically, a covariance function is
a local average model is determined by taking a weight¥g!id if it produces a nonnegative definite covariance

sum of outputs for thé: inputs that are near the queryMatrix for a given set of input points. Mackay [19]

vector. Using a different numbers of nearest neighbof¥0vides a detailed description on a wide variety of

it is possible to find the optimal value df for which covariance functions.
the RMSE is minimized.
McNames [20] presented a new method of optimizing IV. MAIN IDEA
the model parameters in order to minimize the multi- The main idea discussed in this paper is to build a
step cross validation error. In previous work [20], th@redictive model that estimates given the history of
author proposed the adoption of nearest trajectory moggist observations. Rather than creating a single ’point-
for time-series prediction. This method searches th&timate’ ofy,, we estimateP(y;|y: ;). In this formu-
closest trajectory points in the reconstructed state spaggon, the mean of this quantity (obtained by computing
as opposed to nearest neighbors. A comparative stufl¢ expected value) will produce an estimate for the
on different nonparametric methods including nearegiture value ofy, while the variance of this distribution
neighbors, RBF, and nearest trajectory methods to pigould quantify the uncertainty in the predictions. As
dict chaotic time series can be found in [15]. The idea #@at uncertainty changes in time, it can be indicative of
obtain iterative time series predictions using a regressign unanticipated change in the data generating process.
tree based approach has been addressed by Badel etrigls change could be due to several issues, including
[2]. the movement of the hidden state from one state to
Gaussian Process models have gained popularity @nother.
the machine learning community because many machine~or a true prognostic capability on low-dimensional
learnign algorithms including neural networks, splinesystems, i.e., one where a forecast is made at a time
and other regression methods are special cases of Gausizon significantly far in the future compared to the



natural frequency of the system, we need the ability Once these algorithms are appropriately trained, it is
to make long term predictions. Such predictions amgossible to iteratively prediaj steps ahead in time for
theoretically impossible for chaotic systems [6] if theny given test case. It should be noted that for a chaotic
prediction horizon is on the same order as the Lyapuntime series the forecast qf steps in future is restricted
time. This quantity is the amount of time that is requiretb a prediction horizon that can be calculated from the
for a volume of phase space to expand to a size tHatapunov exponent, if it is known. However to predict
completely covers the underlying dynamic attractor. within this limit, it is necessary to train the model so that
There are at least two ways to make predictions abdtitearns the underlying dynamics of the system from the
an event in the future. One method is to make thastorical observations. The extraction of the dynamics
prediction in such a way that the estima®€y;,|y; ;) can be achieved through delay coordinate embedding.
for a fixed durationr in the future. If7 is significantly ~ According to Taken’s theorem [4], [28] given a finite
longer than the natural period of the system as measursst of scalar observations, it is possible to reconstrigct th
by the low frequency modes in the Fourier spectrum eittractor in the phase space with an appropriate choice
the signal, such a model would make predictions thaf time delay ¢) and embedding dimensio®]. Given
are fixed in time; it would only make predictions fora time seriesr; of length A/ the delay vectors; with
those events that are exacttyunits in the future. The lengthM, = M —(D—1)r data points can take the form
second method is to generaterated predictionsvhich as shown in Equation 4. Here the embedding dimension
rely on developing a model to estimaiy,|y;_,) and is an integer number and the delay is a duration with
then feeding the output of the model back into the inputonsecutivd sample points i.er = [ x --, wheref, is
thus producing an estimate & (y:.1|u:, v, ), where the frequency at which the data has been sampled. Given
¢ iS a statistic (such as the mean) computed from theg, X serves as an input data matrix of siZe—1) x M,
distribution computed at time [25], [30]. This form of and thei*”* column of X represents a vector delayed by

iterated prediction is depicted in Figure 2. (i — 1)7, wherei < (D — 1). The corresponding output
is denoted by), termed as the target vector as shown
in Equation 4.
" Gaussian Process
D — Model Plssi) A. K-Nearest Neighbor
The k-nearest neighbor algorithm uses all available
input dataX and associated output dajauntil time ¢
Gaussian Pracess to produce a prediction af;,1. Specifically, to estimate
Model with N . . . .
feedback for Ply.aees) P(ylyi_1), given x; we identify the k& vectors in
R s T e Ply |y, the data set that are closest to that vector in terms
of the Euclidean distance. The mean of the outputs

associated with those vectors is used as an estimate of
Fig. 2. The top panel in this figure shows a method for gemegati the expected value of the distributioBp (P (y:|y;_;))

predictions of the quantityP(y:|y;_;) using Gaussian Process re- ; ; ;
gression. The lower panel shows a method to do iterated i, and the variance of the outputs is used to estimate

where a statistic such as the mean output of the model is feidibto VGTP(P_(yt|yz—1))- Thi_S method does no_t attempt to
the model to generate the next output. summarize the data in any way and simply uses a

simple ‘look-up’ table to estimate the parameters of
the distribution. These estimates are based on heuristic
V. ALGORITHMS principles regarding the local distribution of data at time

We provide a brief overview of three algorithmg'
that we use for estimatind(y:|y;_;). The first two
algorithms, the k-nearest neighbor and the bagged neyl-
ral network algorithms, have been developed for many
applications and have been widely discussed in theThe bagged neural network [3] model consists of
literature [13]. These algorithms provide a benchmardevelopingV feedforward multi-layer perceptrons using
for comparison against the performance of the Gaussithe available input and output data. Each model is made
Process regression which has become popular in the taking a sample of data (with replacement) from the
machine learning community over the last ten years. data set(X,)). If each network is labeled aS;(0;),

Bagged Neural Networks

4



M Input data matriz (X) Target vector (Y)T]
Tty Ttr+r Ty H(D-2)7 Tty +(D-1)7
Tty Tto+r Tty (D-2)T Lty (D-1)T

2 = It% xt3'+r It3+('D—2)T xt3+('D—1)T 4)
Ttne,  Ttap+r 0 LTt H(D-2)1 Lty +(D-1)7
the overall estimate oEp(P(y:|y;_;)) iS given by: wherex is the test vector andv is a set of weights.
N Assuming that we choose a prior distribution for the
En(P © V) — Gi(X,, 0, 5 welg_hts as Gaussian with zero mean a_md covariance
P(Plulyi-)) ; (%, 0:) ®) atix ¥, and that the noise is Gaussian and inde-

pendent and identically distributed, with varianeg,
We compute the posterior probability distribution of the
weights given the dat&Y,y):

The estimate of the variance in the prediction, and th
the associated uncertainty is given by:

N
Varp(P(yely; 1)) = Z[Gi(?ﬁi,9i)—EP(P(yt|y;11))]2 P(w|X,y) = N(U%A*Xy,A’l) (8)

(6) h A 1 T —1
: . : . . = XX P der t k -
This estimate of the uncertainty is a function of thgv ere o + 2,7 I order o make a pre

heterogeneity of the data sampl&s In the event that all d!ct|(_)n, givena test ”.‘p“f" we comp_ute the predlc_tn{e

4 . Lo . distribution by averaging over the weightsand obtain:
samples are identical, the only variation in the estimates
will be _du_e tq variation in the i.nitial startiqg point of P(f(R)% X,y) = N(%RTA—lxy’iTA—li) 9)
the optimization procedure. This method is related to o

Ensemble Methods in machine learning and are widelyhare 4 — L xXT + 1. Using the so-called 'ker-
o2 p -

g?e‘?bto_ est|3|;nlate the mean and variance of the targel trick’, we obtain Gaussian Process Regression by
istribution [31]. assuming that we have a mappifgx) that maps the
original N dimensional data into a large, possibly infinite

dimensional space. Replacing the independent variable

A Gaussian Process is a stochastic process such Wafih jts transformed version leads to the following
each finite subset of variables in the process is Mylyciarior distribution:

tivariate Gaussian distributed [24]. In 1996, Neal [21

noted that if the weights and biases in a neural network

are drawn from a Gaussian distribution, then as the

number of hidden units increases, the prior distribution

over functions defined by such networks will converge

to a Gauss[an Procgss. This im.portant result led manyp( f(e(x))|®(x), X, y)

in the machine learning community to research Gaussian 1

Processes and support vector machines. N(
Following the notation and derivation in Rassmussen

and Williams [24], Gaussian Process Regression isT&lis implies that the posterior distribution (Equation

generalization of the standard linear regression modé@) is also Gaussian, with the predicted meaix)

We begin with a brief review of their Bayesian derivationd variances(x) for a given test input(x). After

of linear regression with the modg¢(x) = x”w and an Substituting the value oft and doing some simple matrix
additive Gaussian noise, we have: manipulations the predicted mean and variance, in the

feature space, can be expressed as:

C. Gaussian Process Regression

(x)TA Xy, d(x)TA'0(%) (10)

72
Gn

f) = x'w @) .
y = f(®)+e %) = O(x)"'T,0(x)[0n] + B(x)"T,0(x)] 'y
en ~ N(0,02) (11)



D. Gaussian Process Calculation using V-formulation

The second factor which influences the computational
AN A anT o\ (T 2
0(%) = 2(x)" Lp®(X) — O(%) Xp&(x)[o, ] time is the inversion ofo21 + fI)(X)Tprl)(x)] which
+@(x)"2,0(x)] 1 0(x)TD,®(%) (12) is ann x n matrix (Equation 11). As the number of
) o . data points grows, inverting a matrix of sizeof this
Equau_on_ll_and. 12 pose a significant computathng&e leads to operations with complexi}{n?) which is
complexity in situations where the number of data poin{gfeasible due to memory and processing limitations. To
is large. One type of complexity is regarding the amoupb,qje this issue, we have adopted the Gaussian process
of time required to learn the hyperparameters usgfaihod using V-formulation developed by Foster et. al
while constructing the covariance function. The COMMOA 1] [12]. In the proposed technique, the low rank ap-
approach to addressing this issue is to estimate the vegln,imation of larger matrices is calculated using partial
of hyperparameters and the noise term by maximizingy,,jesky factorization. In Equation 11, thex n matrix
the log-likelihood of the model parameters given th?cb(x)TEpcb(x)) can be approximated by V™, where
data. _ _ ~ then x m matrix V is constructed by partial Cholesky
In this research we are using the RBF stationaiecomposition (PCD). These algebraic operations can be

covariance function given in Equation 13: summarized as follows,
1 (; _x/i)Q
Clre) =tre (‘5 2 26T 2p 2 en " Vi Vil (26)
=1 - PCD
+ 92 + 9351'3' (13) [(I)(X)TEP(I)(X)]PXn -V PXW'Vgxn (17)

where 6=[0,,02,05,01] is the vector of hyperparameters Equation 11 can be rewritten as,
of the covariance functipn. The parametﬁﬁs and oy _ %) =V VT [0 + VVT]_ly (18)
control the overall scale in vertical and horizontal varia-
tions respectively. Heré, is the bias term anésd;; is This result leads to Lemma 1 from [11]:
the noise term wherés is the variance of the noise and
d;; is the Kronecker delta function. Lemma L:VT[o21+VVT|" L = 021+ VTV]VT
During the training of the Gaussian Process, these hy-
perparameters are optimized based on a random sampl&he V formulation takes advantage of the above
from the input data set. Thus, the hyperparameters camma to reconstruct both Equation 11 and 12. The
be optimized with anyn. random points selected from adetails on the proof can be obtain in [11]. Using Lemma
pool of n input points, whergm,. < n). Asm. increases 1, one can rewrite Equation 18 as,
the computational complexity increases exponentially. s o9 S
A common way to estimate the vector of hyperpa- ux)=Vi9enl +VIV] VTy (19)
rameterf is to maximize the log-likelihood by taking Equation 19 is the basis of the so-called V-
its partial derivatives with respect # and performing formulation. Instead of directly inverting thex n matrix
gradient-descent search. If the training covariance matfiz2 1 + V7], the algorithm addresses the inversion of
K = o2l + ®(x)"5,®(x), the log-likelihood function 5, x 1m matrix [s21 + VTV], using the partial Cholesky
can be expressed as: factorization. For smallem, the regression algorithm
1 1o 1 with V formulation is much faster and always numer-
L(9) = —510g|K| —y Ky - 5”103(2”) (14) ically stable. Further details on the adopted approach
to approximate the Gaussian process calculation can be

Now the derivative ofL(0) with respect to each gpyained in the following literature [11] [12].

hyperparametef; takes the form of:
OL(0) _ —lTr ace {K”%] N lyTK_I%K_ly VI. LORE.NZ DYNAMIFZS AITID N Hs LA-\SER DAT-A
00 2 00; 2 00; The algorithms described in the previous section were
(15) tested on a data set from a¥iH; laser, whose inten-
Further details of the cost function and optimizatiosity profile exhibits buildups followed by a collapse.
algorithm can be obtained in the following referenc&@he exact time instances of these collapses are unpre-
[19]. The algorithm for generating iterated predictiondictable. Researchers have shown the connection of the

using a Gaussian Process is given in Figure 3. experimentally measured electric field froMH; laser




Input: X (Input), t (target),C (Covariance Function)
Rpnaz (Maximum rank)x (test input) andV,
(Number of iterations).
Step 1: Randomly select a subsef n input points
to train hyperparameters (whemne <n).
Step 2: Optimize hyperparameter vector
a) Initialize 6=[0,,62,03,01]
b) Compute covariance matri2 usingn
input points.
c) Compute low-rank approximation of
covariance matrix constructed in (b). ‘
d) Construct log-arithmetic likelihood function. 0 200 400
e) Maximize cost function with respect to each
hyperparameter. Fig. 4. This figure shows the history of the square of the statiable
f) Obtain the optimized hyperparameter values, (u) of the Lorenz model evolved with time. The integration tistep
Step 3: Construct Model. is 0.05 second witlr = 2, b = 0.25 andr = 15.
g) Redefine low-rank approximation of covar-

iance matrix using optimized hyperparamet&rgaund in [14]. Hibner showed that the square of the
Step 4: Make Predictions state variable:«) at each time instant is analogous to the

Intensity

600 800 1000 1200
Sample points

for & := 110 Niger _ electric field intensity field of theV Hs laser system. The

h) Compute covariance matrix between test | | orenz-like chaotic patterns observed in the intensity
points and active set. pulsation of the laser can be theoretically generated using

) Redefine low-rank approximation of Lorenz model with the control parameters adjusted to

covariance matrix constructed in (g). o =2,b=0.25andr = 15 (Figure 4).

j) Compute and Storé*" predictive mean For this study, we use data from an optically pumped

and variance. 81.5 micronN H; FIR laser. The data consists of a time
k) Updatex with &*" predicted mean. series of 25,000 samples taken at a sampling rate of

end 12.5 MHz. The data is quantized using an 8-bit analog-
Output: /i(x) (Predicted mean);(x) (variance) to-digital converter. The data has a signal-to-noise ratio
Fig. 3. The Iterative Gaussian Process Algorithm. of 300. Further details of the measurement setup can

be found in the literature by tbner et al [14]. We

normalize the laser intensity to lie between 0 and 1 by
system to that of the dynamics of Lorenz model [33Hividing each observed value by the maximum value of
The Lorenz equation, as proposed by Hankel [14], cab5.
approximate the dynamical behavior of the optically From here on, to avoid any confusion, we will label
pumpedN H; single mode laser field. The equations fothe electric field fromV [ laser system asxperimental
the Lorenz model can be expressed as follows: data setand thewu? obtained from Lorenz model as
simulation data setGiven these data sets, the challenge

u=—o(u—v) (20) s to build a model that can predict the behavior of the
v=—u(w—r)—v (21) laser system as far into the future as possible with a
W= uv — bw (22) measure of confidence.

This set of differential equations describes a nonlinear
dynamical system. For specific values ®f b and r,
the evaluation of the state vectfu, v, w) gives rise to
the famous Lorenz attractor. Figure 5 shows a typic
three dimensional representation of the Lorenz attractd
numerically simulated using d'* order Runge-kutta )
integration scheme. The state variables and the contfbl Data Set Selection
parameters in the Lorenz equation are closely related tol) Experimental Data SetGiven the 25,000 laser
the physical quantities of the laser physics. The detailstensity measurements, we divided them into two con-
of these relationships and their interpretations can liguous groups for training and testing as described

VII. ANALYSIS

We have tested the algorithms discussed in this paper
gﬁing the data from Lorenz model and théH; laser
ystem.



2) Simulation Data SetThe first 100 points of the
simulated data obtained from the Lorenz model were
25+ discarded to remove transient effects. From the remain-
ing set of data points, the first 1200 points were used

20 for training purposes and the remaining kept for testing.
=15 Figure 4 represents the time history of the training set
used in this analysis. For the simulated data the optimal

104 value of D andr was found to be 140 and 1 respectively,

10 using the same grid search approach described above.
0 Thus, the input data formed a matrix of siz&9 x 1061
u 5 10 -10 v with a corresponding target vector of siz@61 x 1. The
simulation test set was constructed beginning at time step
Fig. 5. This figure shows a three dimensional representatfoie 1201 and will be referred as test S for the rest of the

Lorenz attractor evolved with time. The integration timepsis 0.05 paper.
second witho = 2, b = 0.25 andr = 15. Hereu, v, w are the state
variables.

5
-10

30

—Training
---Test

25

below. The training data was comprised of the first 12

samples in the data set. After training we run the mod

against multiple test sets that were arbitrarily consedct

such that the test sets did not overlap with any subs

of the training data. For clarity, however, we show th

results of the algorithms on three test sets only. The

three cases will be referred to as test A, B, and

respectively. To find the optimal value of parametel ‘ ‘ , ‘ ‘ ‘ P S

such as the embedding dimensibrand time-delay- an 200 400 sgr?q%m 38%51(32% alﬁg? 14001600

exhaustive search was conducted over a specified range

of discreteD and r values. With a given training set, Fig._ 6. This figure _shows the intensity of tIﬂéHg I_aser as gfun_ction

each combination oD and has been used to buit thel I o e g and estseis. The obecive of e < to

model and thereafter tested on a separate test set. &) to predict the collapses in the laser intensity in temaining

each combination, the normalized mean square error43 points while providing a measure of confidence in the iptied.
- .That measure of confidence will be used as a prognostic signal

the prediction was calculated for the same test set. Using

this technique, we were able to identify the valuelof

andr which minimize the normalized mean square errOé Results

of the predictions. The grid search yieldéd= 35 and ~

7 = 1. The normalized mean squared error for a set of We tested each four algorithms on these data sets:
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predictions{gi}fvzl is given by: k-nearest neighbors:{NN), bagged multilayer percep-
trons (B-MLP), Gaussian Process Regression (GP), and
- . 9 Gaussian Process Regression developed with the V-
NMSE = No2, Z(y —v) (23) Formulation (GP-V). We arbitrarily choge= 30 for the

=1 k-nearest neighbors algorithm and averaged the output of

wherey; is the observed valug; is the predicted value, 10 MLPs each with 10 hidden units for the bagged MLP
andor is the standard deviation of the true values OV&figorithm. For the GP method, dll 66 (experiment) and
all the N points in the test set. 1061 (simulation) sample points of the input data matrix
Given the training data set, we used the time seri@gere used to compute the covariance matrix. We used
embedding methodology to generate a target vector @asandom sample di0% of the input data to learn the
shown in Equation 4. Thus, the input data formed wmodel hyperparameters as shown in Equation 13 for the
matrix of size34 x 1166 with a corresponding target GP and GP-V algorithms. The gradient descent to find
vector of sizel166 x 1. Figure 6 shows a plot of the the optimal set of hyperparamtefiswas done using a
laser’s intensity as a function of time for the trainingscaled conjugate gradient algorithm and with a maximum
and test sets. of 10 function evaluations.
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Fig. 7. The four plots of this figure show the iterative prédics (of four algorithms) overlapped on the true test data dunction of time.
Both GP and GP-V algorithms are both able to model the loagth fiiequency oscillations and the collapse event accyratélis is the same
test case corresponding to the simulation data.

The GP-V algorithm has one additional parametse 25

compared to the standard GP algorithm: we must choc s %0 oo
the optimal rank of thel/ matrix. In this study, the 2, x 30%
rank was chosen such that it minimized the NMSE o ° e
a hold-out data set that did not overlap with the te: 15 2 A 60%
set. Figure 8 shows the plot of the NMSE (averag £ A°

of 10 runs) as a function of rank for th& Hs; laser z 4 .u°§ o

data set and this analysis was performed for differe ot Optimal rank
percentage of input data points that has been used 05 §e

optlmlz_e the hyperparameters _of the covariance functic . %Eﬁ% 8 ; ; ; TIYYIIIYY
(Equation 13). For both simulation and experimental da ! fofpopopoefia

O Il Il ;== Il Il
sets, the optimal ranks were estimatedlastimes the 0 100 200 300 400 500 600 700 800

corresponding dimensiofD — 1) of their input data
matrix. For each test, the algorithms are initialized withig. 8. This figure shows the normalized mean squared errgiS(E)
(D . 1) past values of the given test set. and then V\ﬂgthe prediction as a function of the rank of the low-dimensil ap-
. L. o ; roximation to the kernel matrix used in Gaussian Procegs&Rsion.
generate iterated predictions as described in Section Yhe analysis was run for different percentage of input senppiints
that have been used to optimize the hyperparameters of tagiaoce

TABLE | function.
THE TABLE SHOWS THE NORMALIZED MEAN SQUARED ERROR
(NMSE) FOR THE GAUSSIAN PROCESS(GP), GAUSSIAN PROCESS

et NETwor.,described in this paper (GP, GP-V, B-MLUPAN) using
DIFFERENT TEST SETYA, B, CAND S). QUANTITIES IN BOLD the four test sets (A, B, C and S) mentioned earlier.
DENOTE THE MINIMUM OBSERVEDNMSE. The results, shown in Table | indicate that the Gaussian
Process methods (with or without the low-rank approx-
imation) produce superior results compared to the other
algorithms. For test case4 and B, Gaussian process
with V-formulation (GP-V) emerges with a better score
compared to standard Gaussian Process (GP). In Figure
1.2219 7, the true values overlapped with the predicted values
(represented byx) of the four algorithms that have
We compared the forecasts of the four algorithmseen used for test S. Both methods modeled the local

Test GP GP-V  B-MLP k-NN
A (1201-1500) 0.1669 0.0474 1.5675 1.1996
B (2001-2220) 0.4873 0.1155 1.0431 1.2234
C (3201-3570) 0.2377 0.8747 1.1001 1.0767
S (1201-1550) 0.1622 0.1798 1.4627




(rapid) oscillations as well as the global trend in thehowed significantly better performance than the bagged
data. These methods also provided superior predictiomié.P and thek-nearest neighbor approaches. Figure 10
regarding the timing of the collapse in the laser intershows the accumulated error as a function of time for
sity when compared t&-nearest neighbork(NN) and Test Set A. This plot also indicates that the GP-V
bagged multilayer perceptron (B-MLP). Figure 9 showalgorithm outperforms the GP algorithm as indicated by
the boxplot generated from NMSE values of the test stiie slower rate of growth in the cumulative error after
(of experimental data) for all the algorithms trained ovehe collapse. In the post-collapse region, the cumulative
100 randomly chosen data sets. The NMSE has beemor drastically increases. The occurrence of a collapse
calculated on a separate test set that did not overlapent results in the loss of the GP and GP-V'’s prediction
with any subset of the data used for training. Froroapability.

Figure 9 it can be concluded that standard Gaussian
process (GP) and Gaussian process with V-formulatis
(GPV) completely outperformg-nearest neighbork¢ —GP
NN) and bagged multilayer perceptron (B-MLP) on pre "x"gf,;l\L/P
diction task. This is because the medians of the NMS o k-NN
of predictions for both standard Gaussian process a

Gaussian process with V-formulation are much smalls
compared tok-nearest neighbor and bagged multilaye
perceptron. Also it can be seen that the performanc
of standard Gaussian process and Gaussian process !
V-formulation are very comparable.
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Fig. 10. This figure shows the cumulative er@s as a function of
ﬁ time for the four tested algorithms for the test data showRigure 6.
The Gaussian Process and the Gaussian Process with V-Edionul
i e outperform the other models in terms of the cumulative effbe GP-
+ V algorithm has the best performance out of all the modeledeS he
vertical line shows the time of the collapse in the laserrisitg.

o Q Another measure which we used to determine the
performance of the algorithm is based on the estimated

' prediction horizon which is the amount of time that
0—=2p G‘P"V B-MLP NN it ta_kes for the cumulative error to excgeq a certain
(arbitrary) threshold. The estimated prediction horizon

(in sample points) is shown in Table Il for each of
Fig. 9. This figure shows the boxplot representation of tis set the tested algorithms. The GP and GP-V methods had

using all the four algorithms. The NMSE is calculated based300 the best prediction horizon, with the GP-V algorithm

sample points of the test set. . :
showing the best overall performance across the four test
. - sets.

To Ic?mpare the r?tz ?;] which Iprted|ct|or:j etrrors 4% The threshold to determine the prediction horizon
cumuiate, we computed the cumuiative prediction errgg dependent on the prognostic application. Since the

using the following formula: cumulative error is a monotonically increasing function

NMSE
-]

k ) of time, the threshold will only be exceeded once.
Cr(k) = (i — vi) (24)  Figure 11 shows the GP-V predictions for test data set
i=1 A along with the associated prediction variance. This

where the indeX can hold any value frorhto N andN  variance signal can be used for prognostics because it
is the total data points in the test set. In this formdla, is generated in addition to the predictions of the time
represents the total normalized squared error until tinseries. The figure shows that the GP-V algorithm can
stepT'. Using this measure, the comparative performanceodel both the local variations in the data along with
of the four tested algorithms yielded an interesting resuthe collapse events.

Both the Gaussian Process methods (GP and GP-V)The prognostic signal is developed by placing a
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TABLE Il

THIS TABLE SHOWS THE TIME(IN SAMPLE POINTS) AT WHICH THE
CUMULATIVE ERROR C' EXCEEDS THE ARBITRARY THRESHOLD

OF UNITY FOR EACH OF THE FOUR MODELS TESTED ON THE FOUR

TEST DATA SETS THIS NUMBER IS INDICATIVE OF THE MODEL' S

PREDICTION HORIZON THE GAUSSIAN PROCESS WITH

V-FORMULATION SHOWS THE BEST PERFORMANCE WITH THE

LONGEST PREDICTION HORIZON THE NUMBERS IN BOLD INDICATE

THE BEST PERFORMING ALGORITHM FOR EACH TEST SET

Test GP GP-V B-MLP k-NN
A (1201-1650) 274 346 122 119
B (2001-2450) 184 209 144 115
C (3201-3650) 312 313 235 160
S (1201-1550) 342 341 94 241
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Fig. 11.
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The top panel of this figure shows the iterated ptiedtic

of the GP-V model as a function of time and the bottom paneivsho
the uncertainty in the prediction as estimated by the Gand8rocess.
Notice that the uncertainty in the prediction increasesndttically just
before the collapse. A thresholded version of this signalsed for

prognostics.

Intensity
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o
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Fig. 12. The top panel of this figure shows the observed tdatata

function of time. The lower panel shows a prognostic signhictv is

developed by placing a threshold on the uncertainty of tleeliptions.
The GP and GP-V algorithms are both able to indicate the msdla
before the event actually occurs. This is the same test dastated

in Figure 6.
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threshold on the estimated variance. When that variance
crosses the threshold it is used to indicate that a collapse
will occur in the near future. The threshold value can
be used to control the false-positive and true-positive
rates. Figure 12 shows the true observations for test set
A along with the prognostic signal. The lower panel of
the figure shows the prognostic signal generated by the
GP and GP-V algorithms for the test data setlong

with the position of the true point of collapse. Note that
the prognostic signal is set to high, ahead of the actual
collapse event. Thus, the algorithm’s assessment of its
uncertainty increases as the collapse approaches. Once
the estimated uncertainty crosses a preset threshold, the
output is set to “high™ status, indicating a probable
collapse might occur.

Table 11l shows the number of sample points by which
the prognosis signal leads the actual collapse point for
the four test sets. For test sét both GP and GP-V flags
the warning at the same time instance but this may vary
for other test cases as demonstrated in Table Il

TABLE Il
THE VALUES IN THE FOLLOWING INDICATES THE NUMBER OF
SAMPLE POINTS BY WHICH THE PROGNOSTIC SIGNAL LEADS THE
TRUE COLLAPSE POINT THE PROGNOSIS SIGNAL IS SET TO UNITY
ONCE THE UNCERTAINTY ASSOCIATED WITH EACH PREDICTION
CROSSES A PREDEFINED THRESHOLD

Test GP GP-V
A (1201-1650) 24 24
B (2001-2450) 30 8
C (3201-3650) 34 42
S (1201-1550) 175 167

In spite of the superior performance over other ex-
isting methods, the applicability of standard Gaussian
process (GP) for making predictions using large data
sets is limited by the computational complexity of the
algorithm.

The V-formulation, developed by Foster et. al. can
resolve the computational issues of the algorithm. Fig-
ure 13 represents the computational time involved in
training each algorithm with varying sizes of (training)
data sets. The k-NN algorithm shows to be the fastest
since it requires a match of one vector against the library
of N data points. However, in most test cases, k-NN has
the worst performance in prediction as shown in Table |
and Figure 9. Figure 13 also demonstrates the superior
capability of GP-V in handling both time and memory
requirements with increasingly large training sets. For
the laser data, the GP-V formulation shows more than
a 50% reduction in computation time for a data set
more than an order of magnitude larger. The standard



GP is unable to handle the memory requirement whemd provides a consistent framework for comparing
the number of training points exceeds a certain range @®dictive algorithms.
indicated in Figure 13. Figure 13 shows the us@3if00 The predictions made by the algorithms shown here
sample points for training and the remain2@)0 points generally correlate well with the original signal, with
for testing. On other data sets, our studies indicate thide exception of the region near the collapse of the
GP-V can perform well on data sets with more than gignal. Near the region of collapse, the Gaussian Process
million points. algorithm supersedes the other algorithms in terms of
prediction accuracy and length of the prediction horizon.
The Gaussian Process method provides a principled

200!
approach to modeling uncertainty in predictions. This
B “error bar” is generated by the algorithm and is used
g 150 as a prognostic signal. These signals can be used to
2 . s . .
= test prognostic capabilities for a variety of dynamical
% 100 systems.
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